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The Mathematical Miseducation of America’s Youth: Ignoring Research and Scientific Study in Education

By Michael T. Battista

To perform a reasonable analysis of the quality of mathematics teaching requires an understanding not only of the 
essence of mathematics but also of current research about how students learn mathematical ideas, Mr. Battista points 
out. Without extensive knowledge of both, judgments made about what mathematics should be taught to schoolchildren 
and how it should be taught are necessarily naive and almost always wrong.

RECENT NEWSPAPER and newsmagazine articles, public debates at local school board meetings, and even the 
California State Board of Education1 have aimed a great deal of criticism at the current “reform movement” in 
mathematics education. Exploiting the growing “talk show/tabloid” mentality of Americans, opponents of reform 
support their arguments with hearsay, misinformation, sensationalism, polarization, and conflict as they attempt to seize 
control of school mathematics programs and return them to traditional teaching — that is, to the “basics.” As they cite 
isolated examples of alleged failures of mathematics reform, they ignore the countless failures of traditional curricula. 
Their arguments lack understanding both of the essence of mathematics and of scientific research on how students learn 
mathematics.

Unfortunately, flawed as these arguments are, they nonetheless persuade citizens, legislators, and educational decision 
makers to adopt policies that are inconsistent with relevant professional, scholarly, and scientific recommendations 
about mathematics teaching. Consequently, they threaten the quality of the mathematics education received not only by 
the general citizenry but also by future mathematicians, scientists, and engineers. Thus they endanger the entire 
scientific/technical infrastructure of our country. In this article, I analyze the issues that are relevant to the reform of 
mathematics education from the perspective of the scholarly analysis that undergirds the reform movement and the 
current scientific research on mathematics learning.

Traditional Teaching

How would you react if your doctor treated you or your children with methods that were 10 to 15 years out-of-date, 
ignored current scientific findings about diseases and medical treatments, and contradicted all professional 
recommendations for practice? It is highly unlikely that you would passively ignore such practice.



Yet that is exactly what happens with traditional mathematics teaching, which is still the norm in our nation’s schools. 
For most students, school mathematics is an endless sequence of memorizing and forgetting facts and procedures that 
make little sense to them. Though the same topics are taught and retaught year after year, the students do not learn 
them. Numerous scientific studies have shown that traditional methods of teaching mathematics not only are ineffective 
but also seriously stunt the growth of students’ mathematical reasoning and problem-solving skills.2 Traditional 
methods ignore recommendations by professional organizations in mathematics education, and they ignore modern 
scientific research on how children learn mathematics. Yet traditional teaching continues, taking its toll on the nation 
and on individuals.

For the nation, the economic costs of the traditional system of mathematical miseducation are staggering. According to 
the National Research Council, 60% of college mathematics enrollments are in courses ordinarily taught in high school,
3 and the business sector spends as much on remedial mathematics education for employees as is spent on mathematics 
education in schools, colleges, and universities combined. The mathematical ignorance of our citizenry seriously 
handicaps our nation in a competitive and increasingly technological global marketplace.

For individuals, the effects of mathematical miseducation are like a long-term hidden illness that gradually 
incapacitates its victims. The results of testing by the National Assessment of Educational Progress indicate that only 
about 13% to 16% of 12th-graders are proficient in mathematics.4 And according to the National Research Council, 
75% of Americans stop studying mathematics before they complete career or job prerequisites.5 Indeed, although 
virtually all students enter school mathematically healthy and enjoying mathematics as they solve problems in ways 
that make sense to them, most exit school apprehensive and unsure about doing all but the most trivial mathematical 
tasks.

Mathematics anxiety is widespread. So rampant is innumeracy that there is little stigma attached to it. Many adults 
readily confess, “I was never good at math,” as if displaying a badge of courage for enduring what for them was a 
painful and useless experience. In contrast, people do not freely admit that they can’t read.

Of course, although most people acknowledge that numerous students have difficulty with mathematics, they take 
solace in the belief that bright students are doing just fine. This belief, too, is unfounded. Indeed, because really bright 
students generally learn symbolic algorithms quickly, they appear to be doing fine when their performance is measured 
by standard mathematics tests. But a closer look reveals that they too are being dramatically affected by the 
mathematics miseducation of traditional curricula. For instance, a bright eighth-grader who was three weeks from 
completing a standard course in high school geometry — thus she was two years ahead of schedule for college-prep 
students — responded as follows on the problem in Figure 1.6

This student did not understand that the mathematical formula she applied assumed a particularly structured 
mathematical model of a real-world situation, one that was inappropriate for the problem at hand. Although she had 
learned an impressive number of routine mathematical procedures, this example illustrates that her learning was only 
superficial, a finding that is all too common among bright students. Because such students obviously have the capability 
to make sense of mathematics if given the chance, the case could be made that these students, more than any others, are 
being shortchanged by traditional mathematics instruction.

Ironically, despite this pandemic of mathematics miseducation, the only time that Americans pay any attention to 
mathematics teaching is when educators attempt to improve it. But misconceptions about mathematics and mathematics 
learning are so deeply ingrained in our society that most people can’t truly comprehend the improvements, so they fear 
and resist them.



The Reform of Mathematics Education

The movement to reform mathematics education began in the mid-1980s in response to the documented failure of 
traditional methods of teaching mathematics, to the curriculum changes necessitated by the widespread availability of 
computing devices, and to a major paradigm shift in the scientific study of mathematics learning. The most conspicuous 
component of reform has been the attempt by schools and teachers to implement the recommendations given in the 
Curriculum and Evaluation Standards for School Mathematics, published by the National Council of Teachers of 
Mathematics (NCTM) in 1989.7 Reform recommendations in this and related documents deal with how mathematics is 
taught, what mathematics is taught, and, at a more fundamental level, the very nature of school mathematics.

How Mathematics Is Taught

In traditional mathematics instruction, every day is the same: the teacher shows students several examples of how to 
solve a certain type of problem and then has them practice this method in class and in homework. The National 
Research Council has dubbed the “learning” produced by such instruction as “mindless mimicry mathematics.”8 
Instead of understanding what they are doing, students parrot what they have seen and heard.

In the classroom environment envisioned by NCTM, teachers provide students with numerous opportunities to solve 
complex and interesting problems; to read, write, and discuss mathematics; and to formulate and test the validity of 
personally constructed mathematical ideas so that they can draw their own conclusions. Students use demonstrations, 
drawings, and real-world objects — as well as formal mathematical and logical arguments — to convince themselves 
and their peers of the validity of their solutions.

What Mathematics Is Taught

In traditional mathematics instruction, the mathematics covered is almost identical to what most adults were taught 
when they were children. Students spend most of their time attempting to learn traditional computational procedures — 
that is, things that can be done on a calculator. Furthermore, the focus on computation is so myopic that few students 
develop any understanding of why the computations work or when they should be applied. For instance, traditionally 
taught students who are lucky enough to be able to compute an answer to 21⁄2 ÷ 1⁄4 can rarely explain or demonstrate 
why their answer is correct. Their explanations usually amount to saying, “My teacher said we were supposed to invert 
and multiply.”

In the mathematics curricula recommended by NCTM and all other professional organizations that deal with 
mathematics education, the exclusive emphasis that traditional teaching places on paper-and-pencil computation has 
been moderated. Increased attention is given to mathematical reasoning and problem solving as well as to previously 
neglected topics, such as statistics and the use of computational devices in mathematical analysis. These curricula focus 
on the basic skills of today, not those of 40 years ago. Problem solving, reasoning, justifying ideas, making sense of 
complex situations, and learning new ideas independently — not paper-and-pencil computation — are now critical 
skills for all Americans. In the Information Age and the web era, obtaining the facts is not the problem; analyzing and 
making sense of them is.

The Nature of School Mathematics



Mathematics is first and foremost a form of reasoning. In the context of reasoning analytically about particular types of 
quantitative and spatial phenomena, mathematics consists of thinking in a logical manner, formulating and testing 
conjectures, making sense of things, and forming and justifying judgments, inferences, and conclusions. We do 
mathematics when we recognize and describe patterns; construct physical and/or conceptual models of phenomena; 
create symbol systems to help us represent, manipulate, and reflect on ideas; and invent procedures to solve problems.

To illustrate, consider the problem, “What is 21⁄2 divided by 1⁄4?” Students taught traditionally are trained to solve 
such problems by using the “invert and multiply” method, which most of them memorize, quickly forget, and almost 
never understand. Thus students will write:

21⁄2 ÷ 1⁄4 = 5⁄2 x 4⁄1

In contrast, students who have made sense of fractions and who understand the operation of division don’t need a 
symbolic algorithm to compute an answer to this problem. Because they interpret the symbolic statement in terms of 
appropriate mental models of quantities, they are quickly able to reason that, because there are four fourths in each unit 
and because there are two fourths in a half, there are 10 fourths in 21⁄2. Younger students might need to draw a picture 
to support such reasoning.

Students who truly make sense of this situation are not manipulating symbols, oblivious to what they represent. Instead, 
they are purposefully and meaningfully reasoning about quantities. They are not blindly following rules invented by 
others. Instead, they are making personal sense of the ideas. These students have developed powerful conceptual 
structures and patterns of reasoning that enable them to apply their mathematical knowledge and understanding to 
numerous real-world situations, giving them intellectual autonomy in their mathematical reasoning.

Obviously, not all problems can be easily solved using such intuitively appealing strategies. Students must also develop 
understanding of and facility with symbolic manipulations and even an appreciation for the workings of axiomatic 
systems that describe how to deal formally with mathematical symbols. Thus it is not enough to involve students only 
in sense making, reasoning, and the creation of new mathematical knowledge. Sound curricula must include clear long-
range goals for ensuring that students become fluent in employing those abstract concepts and mathematical 
perspectives that our culture has found most useful. Students should be able to apply, readily and correctly, important 
mathematical strategies and lines of reasoning in numerous situations. They should possess knowledge that supports 
mathematical reasoning. For instance, students should know the “basic number facts” because such knowledge is 
essential for mental computation, estimation, performance of computational procedures, and problem solving.

Nonetheless, students’ learning of symbolic manipulations must never become disconnected from their reasoning about 
quantities. For when it does, they become overwhelmed with trying to memorize countless rules for manipulating 
symbols. Even worse, when students lose sight of what symbol manipulations imply about real-world quantities, doing 
mathematics becomes an academic ritual that has no real-world usefulness. Indeed, to be able to use mathematics to 
make sense of the world, students must first make sense of mathematics.

The Science of Learning Mathematics

The redefinition of school mathematics curricula and instruction has occurred at the same time as — and, indeed, has 
been influenced by — the abandonment of the outdated and simplistic behaviorist learning theory that has dictated the 
course of mathematics teaching for more than 40 years. Mathematics education is struggling mightily to emerge from 
an era in which the prevailing views of mathematics and learning have been mutually reinforcing: school mathematics 



has been seen as a set of computational skills; mathematics learning has been seen as progressing through carefully 
scripted schedules of acquiring those skills. According to the traditional view, students acquire mathematical skills by 
imitating demonstrations by the teacher and the textbook. They acquire mathematical concepts by “absorbing” teacher 
and textbook communications.

In contrast, all current major scientific theories describing students’ mathematics learning agree that mathematical ideas 
must be personally constructed by students as they try to make sense of situations (including, of course, 
communications from others and from textbooks). Support for the basic tenets of this “constructivist” view comes from 
the noted psychologist Jean Piaget and, more recently, from scientists attempting to connect brain function to 
psychology. For instance, Nobel laureate Francis Crick has stated, “Seeing is a constructive process, meaning that the 
brain does not passively record the incoming visual information. It actively seeks to interpret it.”9 Similarly, 
psychologist Robert Ornstein asserts, “Our experiences, percepts, memories are not of the world directly but are our 
own creation, a dream of the world, one that evolved to produce just enough information for us to adapt to local 
circumstances.”10

More than two decades of scientific research in mathematics education have refined the constructivist view of 
mathematics learning to provide detailed explanations of how students construct increasingly sophisticated ideas about 
particular mathematical topics, of what students’ mathematical experiences are like, of what mental operations give rise 
to those experiences, and of the sociocultural factors that affect students’ construction of mathematical meaning. To 
distinguish this theory, which is based on empirical research, from the broad philosophical constructivist stance taken 
by educators specializing in other disciplines, I will refer to it as “scientific constructivism.”

Unfortunately, most educators (including many teachers, educational administrators, and professors of education) and 
almost all noneducators (including mathematicians, scientists, and writers for the popular press) have no substantive 
understanding of the research-based constructivist theory that I have alluded to above. Many of them conceive of 
constructivism as a pedagogical stance that entails a type of nonrigorous, intellectual anarchy that lets students pursue 
whatever interests them and invent and use any mathematical methods they wish, whether these methods are correct or 
not. Others take constructivism to be synonymous with “discovery learning” from the era of “new math,” and still 
others even see it as a way of teaching that focuses on using manipulatives or cooperative learning.

None of these conceptions is correct. Scientific constructivism is a well-developed scientific theory that has proved 
invaluable in understanding empirical research on students’ learning of mathematics. To illustrate some of the depth of 
scientific constructivism, I briefly discuss its description of two fundamental learning mechanisms and offer an example 
of the type of insight that can result from constructivist research.

Abstraction, Reflection, and Learning

In scientific constructivist accounts of learning, abstraction is the fundamental mental mechanism by which new 
mathematical knowledge is generated. Abstraction is the process by which the mind selects, coordinates, combines, and 
registers in memory a collection of mental items or acts that appear in the attentional field. There are different degrees 
of abstraction, ranging from isolating an item in the experiential flow and grasping it as a unit to disembedding it from 
its original perceptual context so that it can be freely operated on in the imagination, including projecting it into other 
perceptual material and using it in novel situations. Although the process of abstraction has been discussed for 
centuries, current scientific constructivist research is elaborating its exact role in mathematics learning.11 Meanwhile, 
neuroscience is beginning to contemplate the workings of abstraction in the brain.12 Accounts from both camps make it 



clear that abstraction is the critical mechanism that enables the mind to construct the mental entities that individuals use 
to reason about their “mathematical realities.”

Understanding mathematics, however, requires more than abstraction. It requires reflection, which is the conscious 
process of mentally replaying experiences, actions, or mental processes and considering their results or how they are 
composed. As these acts of reflection are themselves abstracted, they can become the content — what is acted upon — 
in future acts of reflection and abstraction.

What emerges from this theory is a picture of meaningful mathematics learning coming about as individuals recursively 
cycle through phases of action (physical and mental), reflection, and abstraction in a way that enables them to integrate 
related abstractions into ever more sophisticated mental models of phenomena. In fact, students’ ability to understand 
and effectively use the formal mathematical systems of our culture to make sense of their quantitative and spatial 
surroundings depends on their construction of elaborated sequences of mental models. Initial models in these sequences 
enable students working with real-world objects to reason about their physical manipulations. Later models permit 
them to reason with mental images of real-world objects. Finally, symbolic models enable them to reason by 
meaningfully manipulating mathematical symbols that represent real-world situations.

Without this recursively developed sequence of mental models, students’ learning about mathematical symbol systems 
is strictly syntactic, and their use of symbolic procedures is totally disconnected from real-world situations. Research 
has shown repeatedly that rote learning of syntactic rules for manipulating symbols is exactly what results for most 
students in traditional mathematics curricula.

Attending to Students’ Mathematical Constructions

Although the description I have just given illustrates some of the conceptual depth of a scientific constructivist view of 
mathematics learning, there is much more to the constructivist research program than its general description of 
learning. In fact, a careful reading of constructivist literature reveals that the power and usefulness of the theory resides 
not in its general formulation but rather in the particulars and refinements of its application. Contemporary 
constructivist researchers in mathematics education have gone well beyond the general theory to develop specific 
models of students’ ways of operating as they construct increasingly sophisticated mathematical knowledge in 
particular mathematical situations. It is this elaboration and particularization of the general theory that makes this 
research truly relevant to instructional issues.

An example from elementary school mathematics illustrates the kinds of insights that can be gained by carefully 
examining students’ construction of particular mathematical ideas.13 CS, a second-grader, was shown a one-inch 
plastic square and the 3-inch by 7-inch rectangle illustrated in Figure 2. She was also shown that the plastic square was 
the same size as one of the squares on the rectangle.

CS was then asked to predict how many of the plastic squares it would take to completely cover the rectangle. She drew 
squares where she thought they would go and counted 30, as shown in Figure 2.

On a similar problem, CS was asked to predict how many squares would cover the rectangle shown in this figure. 

This time, however, she was asked to make a prediction without drawing. CS pointed and counted as shown in the 
following figure, predicting 30.



When checking her answer with plastic squares, she pointed to and counted squares as shown in the next figure, getting 
30. But she got confused, so she counted again, getting 24, then 27.

Clearly, CS was not imagining the row-by-column organization that most adults “see” in these rectangular arrays of 
squares. Although, as educated adults, we easily see how rows and columns of squares will cover these rectangles, CS 
had not yet mentally constructed this organization. For her, this row-by-column organization wasn’t there. It simply 
didn’t exist.

And CS’s thinking is not unusual. Research shows that only 19% of second-graders, 31% of third-graders, 54% of 
fourth-graders, and 78% of fifth-graders make correct predictions about how many unit squares will cover a rectangle. 
These are sobering findings, given that for students in these grades, traditional instruction uses rectangular arrays as a 
model to give meaning to multiplication, assuming that students see such arrays as sets of equivalent columns and 
rows. To construct a proper row-by-column structuring of such arrays, these students must spatially coordinate the 
elements in the orthogonal dimensions of rows and columns, something that is quite difficult for many of them.14

Proper Mathematics Instruction

To be consistent with the scientifically based constructivist theory that I have described, mathematics teaching must use 
detailed scientific research on how students construct particular mathematical ideas to guide and nurture their personal 
construction of mathematical ideas. Because traditional instruction ignores students’ personal construction of 
mathematical meaning, the development of their mathematical thought is not properly nurtured, resulting in stunted 
growth.

One distressing illustration of this phenomenon can be seen when we examine the mathematical conceptions of the 
growing number of college students who have difficulty with basic university mathematics courses. When all is said 
and done, we find that these students have forgotten most of the formal mathematics they “learned” beyond elementary 
school and have reverted to intuitive conceptions that they developed before reaching adolescence. Because the formal 
mathematics they learned in school was disconnected from these intuitive notions, not only have the intuitive notions 
gone undeveloped, but the formal mathematics has made little sense. Thus it was seen as not having much use and was 
quickly forgotten. The career aspirations of these students — many of whom are quite capable in other academic areas 
— are dashed or seriously jeopardized.

To develop powerful mathematical thinking in students, instruction must focus on, guide, and support their personal 
construction of ideas. Such instruction encourages students to invent, test, and refine their own ideas rather than to 
blindly follow procedures given to them by others. For example, returning to the fraction example described above, if 
students are going to progress to a meaningful understanding of the symbolic manipulation of fractions, that 
understanding must come from students’ reflections on their own work with physical fractional quantities. Given 
appropriate experiences in mentally manipulating these quantities, students can, with proper guidance, derive strictly 
symbolic methods for dividing fractions. They might invent the “invert and multiply” method, or they might come up 
with a different symbolic procedure. (For instance, some students get a common denominator and then divide the 
numerators.) Because students derive these symbolic procedures through personally meaningful manipulation of 
quantities, their knowledge of the procedures becomes semantically rich in its connection to their reasoning about 
quantities. It is no longer inert and strictly syntactical. Research clearly shows that such “construction-focused” 
mathematics instruction produces more powerful mathematical thinkers.15

Genuine Issues in Improving Mathematics Learning



Because opponents of reform have sensationalized the mathematics education debate and turned it into a naive “basics 
and tradition are good — reform is bad” dichotomy, their attacks have obscured the genuine issues that require careful 
analysis. I now briefly outline several of these issues.

Lack of knowledge. The major impediment to improving students’ mathematics learning is adults’ lack of knowledge 
— both of mathematics and of research on how students learn mathematics. Because mathematics has been taught so 
poorly for so long, few adults have a genuine understanding of mathematics or of the mathematical enterprise. Most 
adults, who have been mathematically miseducated themselves, believe that mathematics is the performance of set 
procedures invented by others. They have learned — and expect others to learn — mathematics as a set of rigid rules 
invented by others. They simply do not understand mathematics well enough to appreciate when it has been learned 
well. The situation is worse when it comes to scientific knowledge about students’ mathematics learning. As a 
consequence, it is extremely difficult for school districts to implement authentic reform because teachers and 
administrators not only must educate students but also must reeducate parents to understand and support reform.

Disregard of science. One of the major reasons that American educational practice in general and mathematics 
education in particular have made so little progress is that they have failed to adhere to scientific methodology. Too 
often the educational programs and methods used in schools are formulated — by practitioners, administrators, 
laypeople, politicians, and professors of education — with a total disregard for scientific research. Because educational 
practice is not subject to the critical scrutiny of scientific analysis and review, educators continually “reinvent the 
wheel.” They follow one bandwagon after another. In fact, Kenneth Wilson and Bennett Daviss liken the current state 
of educational curriculum development in the U.S. to that of aeronautics before the Wright brothers.

“A century ago, people making airplanes were usually solitary, self-taught visionaries or eccentrics following their own 
theories or hunches. They lacked a good deal of information about aerodynamics. . . . They continued to work 
separately, often unknowingly crossing and recrossing each other’s tracks, unable to take advantage of or build on each 
other’s successes.16”

As a consequence of education’s disregard for scientific practice and the resulting failure to improve student learning, 
the general public has little faith in the ability of professional educators to steer the educational enterprise wisely. 
Individuals in all walks of life value their personal opinions about education as much as or more than those of 
professional educators. It even happens within the field of education itself. For instance, professors of education whose 
area of expertise has nothing to do with mathematics often feel free to make grand pronouncements about how 
mathematics should be taught. Furthermore, because of the lack of confidence in professional educators, control of 
educational programs is often taken out of their hands. As in California and in many local school districts across the 
nation, the effort to control school curricula becomes a heated political battlefield where scientific reasoning plays no 
role.

To steer the educational enterprise away from its current state of chaos, educational practice must be based on 
established scientific research about how students learn. Knowledge obtained by such research is more reliable than the 
commonsensical ideas and folk wisdom most people use to make judgments about teaching. Knowledge obtained 
scientifically is constructed according to rigorous standards of reasoning and verification upheld by scientific 



communities of scholars who constantly review, test, critique, and build on each others’ work. Because it is developed 
so carefully, scientific knowledge is held in high esteem by most educated members of our culture. Thus relying on 
scientific knowledge can serve as a focal point for consensus building in rational discussions of educational practice.

Who the scientific researchers are. If we wish to heed scientific research in mathematics education, to whom should we 
turn for findings from this research? As always, we should consult specialists; we should look to scientific researchers 
whose specialty is research in mathematics education. As obvious as this seems, it is usually ignored by opponents of 
mathematics reform. Because they don’t agree with the findings of the specialists, they seek out researchers in other 
areas to buttress their case. For instance, there are educational and cognitive psychologists who occasionally conduct 
research on the learning of mathematics. Unfortunately, they usually apply general, essentially behaviorist theories that 
ignore both the methods and the results of modern mathematics education research. Research conducted by these 
nonspecialists is so out of step with state-of-the-art mathematics education research that relying on its results sets back 
one’s conception of mathematics learning and teaching at least two decades. Taking a scientific approach to designing 
appropriate mathematics instruction requires one to examine state-of-the-art research conducted by specialists, not out-
of-date research performed by interlopers.

The myth of coverage. One of the major consequences of the blatant disregard of modern scientific research on 
mathematics learning is the almost universal belief in what I call the “myth of coverage.” According to this myth, “If 
mathematics is ‘covered,’ students will learn it.” The myth is not restricted to mathematics alone, of course. But this 
myth is so deeply embedded in traditional mathematics instruction that at each grade level teachers feel tremendous 
pressure to cover huge amounts of material at breakneck speeds. Furthermore, belief in the myth causes teachers to 
criticize reform curricula as inefficient because students in such curricula study far fewer topics at each grade level.

Basing his conclusions on scientific research, Alan Bell of the Shell Centre for Mathematical Education at the 
University of Nottingham counters this myth-based reasoning as follows:

“It may be felt that there is no time for a method which involves intensive discussion of particular points. But on the 
evidence presented . . . we have to ask whether we can afford to waste pupils’ time on [traditional] methods which have 
such little long-term effect when . . . we could be doing so much better.17”

That is, because students in traditional curricula learn ideas and procedures by rote (if at all) rather than meaningfully, 
they quickly forget them, so the ideas must be retaught year after year. In sense-making curricula, on the other hand, 
because students retain learned ideas for long periods of time, and because a natural part of sense making is to 
interrelate ideas, students accumulate an ever-increasing store of well-integrated knowledge. Indeed, consistent with 
Bell’s claim, the TIMSS data suggest that Japanese teachers, whose students significantly outperform U.S. students in 
mathematics, spend much more time than U.S. teachers having students delve deeply into mathematical ideas.18

Putting scientific research aside, most teachers have plenty of personal experience that contradicts the myth of 
coverage. How many times, several weeks after teaching a mathematical topic, do teachers return to the topic and find 
their students acting as if they had never seen it before? How many times do teachers at one grade level find students 
totally ignorant of mathematical topics “covered” during the previous year — even claiming that they never saw the 



topics before? As a deep-seated dogma of traditional mathematics instruction, belief in the myth of coverage seems 
impervious to reasoned analysis.

Testing. Most school districts rely heavily on standardized tests and state “proficiency” tests as bottom-line measures of 
their students’ progress in learning. This practice has several untoward consequences. First, if the tests measure 
traditional outcomes — and many still do — their use maintains the inertia of traditional instruction and seriously 
impedes the adoption of reform. Second, such tests are rarely consistent with scientific research on what mathematical 
understandings should be expected of students at various grade levels. Consequently, teachers, guided by the myth of 
coverage and pressured by administrators and parents to ensure that students pass such high-stakes tests, often demand 
that students use abstract mathematical procedures that they can’t understand in any meaningful way. These students 
haven’t had enough opportunities to construct through experience the appropriate mental models to serve as the 
foundation for such abstract learning. Students are thus forced either to “drop out” of the study of mathematics or to 
resort to mindless mimicry.

Finally, poor understanding of the process of testing creates the “teach to the test” phenomenon that is observed in so 
many school systems. Because of state-mandated proficiency tests, instead of teaching mathematical concepts and 
reasoning, most school programs teach students how to solve by rote the specific types of problems that appear on these 
tests. In fact, one mathematics educator tells the story of a school district’s mathematics supervisor who noticed that, on 
the state proficiency test, area problems had shaded figures and perimeter problems did not. Subsequently, he told 
teachers to teach students to multiply the dimensions when they saw shaded rectangles and to add them for unshaded 
rectangles.

While teaching to the test is rarely so blatantly dishonest, it always reduces the curriculum to mimicry mathematics. 
Moreover, such teaching invalidates large portions of the tests. Indeed, to assess genuine understanding of a concept, 
test items must assess whether students can apply their knowledge in novel situations. If teachers teach students rote 
procedures for doing these novel items, then the items no longer test understanding, but only mere memorization.

Dilutions and distortions. One criticism often leveled at the mathematics education reform movement is that the ideas it 
proposes are untested. This is an important point that must be dealt with carefully, for the real answer is not as 
straightforward as either some opponents or some proponents of reform might have us believe. First, we must examine 
the scientific basis for reform. Extensive studies have shown not only that traditional teaching is ineffective, but also 
what is wrong with it. Still other studies have shown that instruction that is consistent with the basic principles of 
scientific constructivism is more effective than traditional teaching. In fact, through a broad spectrum of studies, the 
constructivist view of learning and teaching that I described above has been scientifically established; “constructivism” 
has become the dominant theoretical position among mathematics education researchers.19 Although, as with all 
scientific theories, this theory requires further elaboration, testing, and refinement, it is far and away the best analysis 
we have ever had of students’ mathematics learning. Consequently, mathematics teaching that implements scientific 
constructivism with high fidelity is not based on untested theory.

However, the critical question is, To what extent is scientific constructivism being implemented in current mathematics 
curricula? At this time, I know of no commercially available mathematics curricula that are systematically and 
completely based on scientific constructivism. Even NCTM’s Curriculum and Evaluation Standards for School 
Mathematics is not completely consistent with scientific constructivism, embracing its general tenets but ignoring many 
of its particulars. (This should not be surprising, since the standards were developed before many of the details of the 
theory had been worked out.)



Nevertheless, the curricula that come closest to implementing scientific constructivism are those that were developed, 
with support from the National Science Foundation, specifically to implement the NCTM Standards. And because these 
curricula were tested in a wide variety of classrooms and to the extent that the Standards are based on the basic tenets 
of constructivism, they surely are not “untested.”

However, this is the first point at which the dilution of scientific theory may have occurred in practice. When it comes 
to instructional units to teach particular mathematical topics, even the most accomplished curriculum developers do not 
pay adequate attention to research on how students learn those topics. Worse yet, even with reform-consistent curricula, 
teachers with incorrect conceptions of and beliefs about mathematics or about how mathematics is learned can 
completely distort the original ideas of the curricula’s creators, turning dilution into outright distortion.20

Next we consider curricula produced by publishing companies. Because such companies are profit-making 
organizations, they publish what will sell, regardless of scientific research on students’ mathematics learning. For 
example, if the department of education in California demands textbooks that focus on huge amounts of drill and 
practice, then, because of that state’s large population, all the major textbook companies will produce such texts. Thus, 
although almost all commercially available mathematics textbooks claim to be consistent with the NCTM Standards, 
most of these textbooks consist of traditional curricula with enough superficial changes tacked on so that publishing 
companies can market them as “new” and consistent with reform. For the most part, textbook companies have 
produced mathematical curricula that are mere caricatures of genuine reform curricula. At this point we have outright 
distortion of reform principles.

Thus, while many school districts claim to be implementing curricula based on mathematics reform, their 
implementations often distort the tenets of reform so greatly and are so far removed from the scientific research on 
mathematics learning that the efforts cannot truly be considered reform mathematics at all. As a consequence, great care 
must be taken in evaluating school districts’ “implementations of reform.” Just because a particular implementation 
fails does not mean that one can reasonably conclude that the theory and the research are wrong. One can conclude 
only that mechanisms for putting theory into practice — teacher preparation, inservice training, textbook creation, and 
teaching — may be flawed.

In addition, we should not expect even authentic reform efforts to be perfect. Although the curricula of reform have 
been tested in actual classrooms, because funding agencies did not support the projects that developed them long 
enough for long-term assessment and revision and because the curricula were first attempts at substantive reform, their 
extended use is bound to reveal needed alterations and refinements. However, instead of reacting to perceived failures 
by “throwing the baby out with the bath water,” we should work together to find better ways to implement sound 
scientific theory. We do not need to go back to traditional methods that research and experience have shown do not 
work.

To perform a reasonable analysis of the quality of mathematics teaching requires an understanding not only of the 
essence of mathematics but also of current research about how students learn mathematical ideas. Without extensive 
knowledge of both, judgments made about what mathematics should be taught to schoolchildren and how it should be 
taught are necessarily naive and almost always wrong. Just as medical treatment must be based on what current 
research tells us about disease and healing, mathematics teaching must be based on what current scientific research tells 
us about how students learn mathematics. We must take mathematics curriculum decisions out of the political arena and 
place them in the hands of professional mathematics educators.



However, giving educators more power to control mathematics curricula requires that they act much more responsibly 
than they have in the past. We must demand that educators at all levels make their practice consistent with scientific 
findings and principles. We can no longer afford to permit the educational enterprise to squander its precious human 
capital.
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